Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 28
1.
BMC Biol ; 22(1): 88, 2024 Apr 19.
Article En | MEDLINE | ID: mdl-38641823

BACKGROUND: Immunosuppressive status is prevalent in cancer patients and increases the complexity of tumor immunotherapy. It has been found that Listeria-vectored tumor vaccines had the potential ability of two-side regulatory effect on the immune response during immunotherapy. RESULTS: The results show that the combined immunotherapy with the LM∆E6E7 and LI∆E6E7, the two cervical cancer vaccine candidate strains constructed by our lab, improves the antitumor immune response and inhibits the suppressive immune response in tumor-bearing mice in vivo, confirming the two-sided regulatory ability of the immune response caused by Listeria-vectored tumor vaccines. The immunotherapy reduces the expression level of myeloid-derived suppressor cells (MDSCs)-inducing factors and then inhibits the phosphorylation level of STAT3 protein, the regulatory factor of MDSCs differentiation, to reduce the MDSCs formation ability. Moreover, vaccines reduce the expression of functional molecules associated with MDSCs may by inhibiting the phosphorylation level of the JAK1-STAT1 and JAK2-STAT3 pathways in tumor tissues to attenuate the immunosuppressive function of MDSCs. CONCLUSIONS: Immunotherapy with Listeria-vectored cervical cancer vaccines significantly reduces the level and function of MDSCs in vivo, which is the key point to the destruction of immunosuppression. The study for the first to elucidate the mechanism of breaking the immunosuppression.


Cancer Vaccines , Myeloid-Derived Suppressor Cells , Uterine Cervical Neoplasms , Female , Humans , Mice , Animals , Myeloid-Derived Suppressor Cells/metabolism , Myeloid-Derived Suppressor Cells/pathology , Cancer Vaccines/metabolism , Uterine Cervical Neoplasms/prevention & control , Uterine Cervical Neoplasms/metabolism , Phosphorylation , Signal Transduction
2.
Sichuan Da Xue Xue Bao Yi Xue Ban ; 55(2): 441-446, 2024 Mar 20.
Article Zh | MEDLINE | ID: mdl-38645870

Objective: To study the immunoadjuvant effects of chitosan oligosaccharide (COS), including the immune activation and the triggering of lysosomal escape, and to explore whether COS can be used as an adjuvant for attenuated live bacteria vector vaccines. Methods: 1) Mouse macrophages RAW264.7 cells were cultured with COS at 0 mg/mL (the control group) and 0.1-4 mg/mL for 24 h and the effect on cell viability was measured by CCK8 assay. Mouse macrophages RAW264.7 were treated with COS at 0 (the control group), 1, 2, and 4 mg/mL for 24 h. Then, the mRNA expression levels of the cytokines, including IFN-γ, IL-10, TGF-ß, and TLR4, were determined by RT-qPCR assay. 2) RAW264.7 cells were treated with 1 mL of PBS containing different components, including calcein at 50 µg/mL, COS at 2 mg/mL, and bafilomycin A1, an inhibitor, at 1 µmol/mL, for culturing. The cells were divided into the Calcein group, Calcein+COS group, and Calcein+COS+Bafilomycin A1 group accordingly. Laser scanning confocal microscopy was used to observe the phagocytosis and the intracellular fluorescence distribution of calcein, a fluorescent dye, in RAW264.7 cells in the presence or absence of COS intervention to determine whether COS was able to trigger lysosomal escape. 3) LM∆E6E7 and LI∆E6E7, the attenuated Listeria vector candidate therapeutic vaccines for cervical cancer, were encapsulated with COS at the mass concentrations of 0.5 mg/mL, 1 mg/mL, 2 mg/mL , 4 mg/mL, and 8 mg/mL. Then, the changes in zeta potential were measured to select the concentration of COS that successfully encapsulated the bacteria. Phagocytosis of the vaccine strains by RAW264.7 cells was measured before and after LM∆E6E7 and LI∆E6E7 were coated with COS at 2 mg/mL. Results: 1) CCK8 assays showed that, compared with the findings for the control group, the intervention of RAW264.7 cells with COS at different concentrations for 24 h was not toxic to the cells and promoted cell proliferation, with the difference being statistically significant (P<0.05). According to the RT-qPCR results, compared with those of the control group, the COS intervention up-regulated the mRNA levels of TLR4 and IFN-γ in RAW264.7 cells, while it inhibited the mRNA expression levels of TGF-ß and IL-10, with the most prominent effect being observed in the 4 mg/mL COS group (P<0.05). 2) Laser scanning confocal microscopy revealed that the amount of fluorescent dye released from lysosomes into the cells was greater in the Calcein+COS group than that in the Calcein group. In other words, a greater amount of fluorescent dye was released from lysosomes into the cells under COS intervention. Furthermore, this process could be blocked by bafilomycin A1. 3) The zeta potential results showed that COS could successfully encapsulate the surface of bacteria when its mass concentration reached 2 mg/mL. Before and after the vaccine strain was encapsulated by COS, the phagocytosis of LM∆E6E7 by RAW264.7 cells was 5.70% and 22.00%, respectively, showing statistically significant differences (P<0.05); the phagocytosis of LI∆E6E7 by RAW264.7 cells was 1.55% and 6.12%, respectively, showing statistically significant differences (P<0.05). Conclusion: COS has the effect of activating the immune response of macrophages and triggering lysosomal escape. The candidates strains of coated live attenuated bacterial vector vaccines can promote the phagocytosis of bacteria by macrophages. Further research is warranted to develop COS into an adjuvant for bacterial vector vaccine.


Adjuvants, Immunologic , Bacterial Vaccines , Chitosan , Oligosaccharides , Animals , Mice , RAW 264.7 Cells , Oligosaccharides/pharmacology , Adjuvants, Immunologic/pharmacology , Bacterial Vaccines/immunology , Macrophages/metabolism , Macrophages/immunology , Macrophages/drug effects , Vaccines, Attenuated/immunology , Cytokines/metabolism , Cell Survival/drug effects
3.
Cereb Cortex ; 34(3)2024 03 01.
Article En | MEDLINE | ID: mdl-38436466

The debate on whether computer gaming enhances players' cognitive function is an ongoing and contentious issue. Aiming to delve into the potential impacts of computer gaming on the players' cognitive function, we embarked on a brain imaging-derived phenotypes (IDPs)-wide Mendelian randomization (MR) study, utilizing publicly available data from a European population. Our findings indicate that computer gaming has a positive impact on fluid intelligence (odds ratio [OR] = 6.264, P = 4.361 × 10-10, 95% confidence interval [CI] 3.520-11.147) and cognitive function (OR = 3.322, P = 0.002, 95% CI 1.563-7.062). Out of the 3062 brain IDPs analyzed, only one phenotype, IDP NET100 0378, was significantly influenced by computer gaming (OR = 4.697, P = 1.10 × 10-5, 95% CI 2.357-9.361). Further MR analysis suggested that alterations in the IDP NET100 0378 caused by computer gaming may be a potential factor affecting fluid intelligence (OR = 1.076, P = 0.041, 95% CI 1.003-1.153). Our MR study lends support to the notion that computer gaming can facilitate the development of players' fluid intelligence by enhancing the connectivity between the motor cortex in the resting-state brain and key regions such as the left dorsolateral prefrontal cortex and the language center.


Mendelian Randomization Analysis , Video Games , Brain/diagnostic imaging , Cognition , Computers , Intelligence , Phenotype , Neuroimaging
4.
BMC Cancer ; 24(1): 288, 2024 Mar 04.
Article En | MEDLINE | ID: mdl-38439023

BACKGROUND: Although HPV prophylactic vaccines can provide effective immune protection against high-risk HPV infection, studies have shown that the protective effect provided by them would decrease with the increased age of vaccination, and they are not recommended for those who are not in the appropriate age range for vaccination. Therefore, in those people who are not suitable for HPV prophylactic vaccines, it is worth considering establishing memory T-cell immunity to provide long-term immune surveillance and generate a rapid response against lesional cells to prevent tumorigenesis. METHODS: In this study, healthy mice were preimmunized with LM∆E6E7 and LI∆E6E7, the two Listeria-vectored cervical cancer vaccine candidate strains constructed previously by our laboratory, and then inoculated with tumor cells 40 d later. RESULTS: The results showed that preimmunization with LM∆E6E7 and LI∆E6E7 could establish protective memory T-cell immunity against tumor antigens in mice, which effectively eliminate tumor cells. 60% of mice preimmunized with vaccines did not develop tumors, and for the remaining mice, tumor growth was significantly inhibited. We found that preimmunization with vaccines may exert antitumor effects by promoting the enrichment of T cells at tumor site to exert specific immune responses, as well as inhibiting intratumoral angiogenesis and cell proliferation. CONCLUSION: Altogether, this study suggests that preimmunization with LM∆E6E7 and LI∆E6E7 can establish memory T-cell immunity against tumor antigens in vivo, which provides a viable plan for preventing tumorigenesis and inhibiting tumor progression.


Cancer Vaccines , Listeria , Papillomavirus Infections , Papillomavirus Vaccines , Uterine Cervical Neoplasms , Humans , Animals , Mice , Female , Immunologic Memory , Memory T Cells , Papillomavirus Infections/complications , Papillomavirus Infections/prevention & control , Carcinogenesis , Cell Transformation, Neoplastic , Uterine Cervical Neoplasms/prevention & control , Antigens, Neoplasm
5.
Synth Syst Biotechnol ; 9(1): 115-126, 2024 Mar.
Article En | MEDLINE | ID: mdl-38292761

Dopamine can be used to treat depression, myocardial infarction, and other diseases. However, few reports are available on the de novo microbial synthesis of dopamine from low-cost substrate. In this study, integrated omics technology was used to explore the dopamine metabolism of a novel marine multi-stress-tolerant aromatic yeast Meyerozyma guilliermondii GXDK6. GXDK6 was found to have the ability to biosynthesize dopamine when using glucose as the substrate. 14 key genes for the biosynthesis of dopamine were identified by whole genome-wide analysis. Transcriptomic and proteomic data showed that the expression levels of gene AAT2 encoding aspartate aminotransferase (regulating dopamine anabolism) were upregulated, while gene AO-I encoding copper amine oxidase (involved in dopamine catabolism) were downregulated under 10 % NaCl stress compared with non-NaCl stress, thereby contributing to biosynthesis of dopamine. Further, the amount of dopamine under 10 % NaCl stress was 2.51-fold higher than that of zero NaCl, which was consistent with the multi-omics results. Real-time fluorescence quantitative PCR (RT-qPCR) and high-performance liquid chromatography (HPLC) results confirmed the metabolic model of dopamine. Furthermore, by overexpressing AAT2, AST enzyme activity was increased by 24.89 %, the expression of genes related to dopamine metabolism was enhanced, and dopamine production was increased by 56.36 % in recombinant GXDK6AAT2. In conclusion, Meyerozyma guilliermondii GXDK6 could utilize low-cost carbon source to synthesize dopamine, and NaCl stress promoted the biosynthesis of dopamine.

6.
Nutr Res Pract ; 17(6): 1084-1098, 2023 Dec.
Article En | MEDLINE | ID: mdl-38053832

BACKGROUND/OBJECTIVES: Previous research has shown maternal betaine supplementation alleviates fetal-derived hepatic steatosis. Therefore, this study examined the anti-inflammatory effect of maternal betaine intake in offspring mice and its mechanism. MATERIALS/METHODS: Female C57BL/6J mice and their offspring were randomly divided into 3 groups according to the treatment received during gestation and lactation: control diet (CD), fatty liver disease (FLD), and fatty liver disease + 1% betaine (FLD-BET). The FLD group was given a high-fat diet and streptozotocin (HFD + STZ), and the FLD-BET group was treated with HFD + STZ + 1% betaine. After weaning, the offspring mice were given a normal diet for 5 weeks and then dissected to measure the relevant indexes. RESULTS: Compared to the CD group, the offspring mice in the FLD group revealed obvious hepatic steatosis and increased serum levels of alanine aminotransferase, interleukin (IL)-6, and tumor necrosis factor (TNF)-α; maternal betaine supplementation reversed these changes. The hepatic mRNA expression levels of IL-6, IL-18, and Caspase-1 were significantly higher in the FLD group than in the CD group. Maternal betaine supplementation reduced the expression of IL-1ß, IL-6, IL-18, and apoptosis-associated speck-like protein containing C-terminal caspase recruitment domain (ASC). Maternal betaine supplementation also reversed the increasing protein expressions of nitric oxide dioxygenase-like receptor family pyrin domain containing 3 (NLRP3), ASC, Caspase-1, IL-1ß, and IL-18 in offspring mice exposed to HFD + STZ. Maternal betaine supplementation decreased the homocysteine (Hcy) and s-adenosine homocysteine (SAH) levels significantly in the livers. Furthermore, the hepatic Hcy concentrations showed significant inverse relationships with the mRNA expression of TNF-α, NLRP3, ASC, and IL-18. The hepatic SAH concentration was inversely associated with the IL-1ß mRNA expression. CONCLUSIONS: The lipotropic and anti-inflammatory effect of maternal betaine supplementation may be associated with the inhibition of NLRP3 inflammasome in the livers of the offspring mice.

7.
Nutrients ; 15(2)2023 Jan 06.
Article En | MEDLINE | ID: mdl-36678155

Maternal betaine supplementation has been proven to alleviate non-alcoholic fatty liver disease (NAFLD) in offspring caused by maternal high-fat diet (MHFD). The gut-liver axis plays an important role in NAFLD pathogenesis. However, whether maternal betaine supplementation can alleviate NAFLD in offspring by the gut-liver axis is unknown. C57BL/6J mice were fed with high-fat diet for 4 weeks before mating, and supplemented with 1% betaine during pregnancy and lactation. After weaning, offspring mice were fed with standard diet to 10 weeks. Maternal betaine supplementation reduced hepatic triglyceride content and alleviated hepatic steatosis in offspring mice exposed to MHFD. Furthermore, the mRNA expression of PPARα, CPT1α and FATP2 was increased and TNFα was reduced by maternal betaine supplementation. Maternal betaine intake decreased the relative abundances of Proteobateria, Desulfovibrio and Ruminococcus, but increased the relative abundances of Bacteroides and Parabacteroides. Moreover, maternal betaine intake increased the concentrations of short-chain fatty acids (SCFAs), including acetic acid, butyric acid and valeric acid, in the feces. Gut microbiota and SCFAs were significantly correlated with hepatic triglyceride content and expression of the above genes. Maternal betaine intake had no effect on other gut microbiota-related metabolites (bile acid and trimethylamine-n-oxide). Altogether, maternal betaine supplementation ameliorated MHFD-induced NAFLD possibly through regulating gut microbiota and SCFAs in offspring mice.


Gastrointestinal Microbiome , Non-alcoholic Fatty Liver Disease , Pregnancy , Female , Mice , Animals , Non-alcoholic Fatty Liver Disease/etiology , Non-alcoholic Fatty Liver Disease/prevention & control , Non-alcoholic Fatty Liver Disease/metabolism , Diet, High-Fat/adverse effects , Betaine/pharmacology , Betaine/metabolism , Mice, Inbred C57BL , Liver/metabolism , Dietary Supplements , Triglycerides/metabolism
8.
Sichuan Da Xue Xue Bao Yi Xue Ban ; 54(6): 1159-1166, 2023 Nov 20.
Article Zh | MEDLINE | ID: mdl-38162066

Objective: To construct Listeria monocytogenes (LM) and Listeria ivanovii (LI) balanced lethal systems expressing cervical cancer antigens, to study their basic biological characteristics, and to provide reference data for the immunotherapy of cervical cancer. Methods: Through seamless cloning via in vitro ligation kit, the HPV16 E6E7 fusion protein antigen gene constructed in our lab was spliced to the complement plasmid pCWgfp-LM dal-Amp that contained the nutritional gene dal. Then, we replaced the ampicillin (Amp) resistance gene of the complement plasmid with the asd nutrition gene. The ligation reaction mixture was transformed into Escherichia coli (E. coli) recipient bacteria DH5αΔasd and the complement plasmid pCWgfp-E6E7-LM dal-Ampfree, which expressed cervical cancer antigens and had no Amp resistance, was obtained by nutrition screening from the E. coli DH5αΔasd. The plasmid pCWgfp-E6E7-LM dal-Ampfree was complemented into LMΔdd and LIΔdd, the attenuated nutrition-deficient Listeria strains with the virulence genes actA and plcB and nutrition genes dal and dat deleted by electroporation, thereby obtaining LM and LI balanced lethal systems expressing cervical cancer antigen genes. The in vitro growth of the strains was observed. Western blot was performed to examine the status of antigen protein expression. PCR was performed to measure the in vitro passage stability of complement plasmid pCWgfp-E6E7-LM dal-Ampfree. Their basic biological characteristics were examined by biochemical reaction tests and hemolysis assay. Results: Two Listeria balanced lethal systems expressing cervical cancer antigen were successfully constructed. The HPV16 type E6E7 fusion protein was successfully expressed in the two Listeria balanced lethal systems. pCWgfp-E6E7-LM dal-Ampfree, the positive plasmid expressing cervical cancer antigen, maintained stable existence in the two Listeria balanced lethal systems. The two Listeria balanced lethal systems expressing cervical cancer antigen showed significantly better recovery growth in comparison with Listeria nutrition deficiency strains. The results of biochemical reaction tests showed that most of the biochemical reaction of the two Listeria balanced lethal systems expressing cervical cancer antigen were consistent with those of Listeria attenuated strains. The two Listeria balanced lethal systems expressing cervical cancer antigen still maintained the hemolytic ability, although their hemolytic ability was slightly inferior to that of the Listeria balanced lethal systems not expressing cervical cancer antigen and the Listeria attenuated strains. Conclusion: The two Listeria balanced lethal systems expressing cervical cancer antigen genes are constructed successfully. They display normal in vitro growth. The complement plasmid pCWgfp-E6E7-LM dal-Ampfree can maintain stable existence in vitro, showing little change in its biochemical characteristics and hemolytic ability. Further research should be conducted to investigate the potential of these two recombinant strains to be used as candidate strains for cervical cancer therapeutic vaccine.


Listeria monocytogenes , Listeria , Uterine Cervical Neoplasms , Female , Humans , Uterine Cervical Neoplasms/genetics , Escherichia coli/genetics , Listeria/genetics , Listeria monocytogenes/genetics , Recombinant Proteins
9.
Vet Res ; 53(1): 113, 2022 Dec 31.
Article En | MEDLINE | ID: mdl-36587206

Listeriolysin O (LLO) is the main virulence protein of Listeria monocytogenes (LM), that helps LM escape lysosomes. We previously found that the cellular immune response elicited by L.ivanovii (LI) is weaker than that elicited by LM. We speculated that this may be related to the function of ivanolysin O (ILO). Here, we constructed hemolysin gene deletion strain, LIΔilo, and a modified strain, LIΔilo::hly, in which ilo was replaced by hly. Prokaryotic transcriptome sequencing was performed on LI, LIΔilo, and LIΔilo::hly. Transcriptome differences between the three strains were compared, and genes and pathways with significant differences between the three strains were analyzed. Prokaryotic transcriptome sequencing results revealed the relationship of ilo to the ribosome, quorum sensing, and phosphotransferase system (PTS) pathways, etc. LIΔilo exhibited attenuated biofilm formation ability compared to LI. Biofilm formation was significantly recovered or even increased after replenishing hly. After knocking out ilo, the relative expression levels of some virulence genes, including sigB, prfA, actA, smcL, and virR, were up-regulated compared to LI. After replenishing hly, these genes were down-regulated compared to LIΔilo. The trend and degree of such variation were not completely consistent when cultured in media containing only monosaccharides or disaccharides. The results confirmed that hemolysin is related to some important biological properties of Listeria, including biofilm formation and virulence gene expression levels. This is the first comprehensive study on ILO function at the transcriptomic level and the first evidence of a relationship between Listeria hemolysin and biofilm formation.


Listeria monocytogenes , Listeria , Animals , Listeria/genetics , Listeria/metabolism , Hemolysin Proteins/genetics , Transcriptome , Listeria monocytogenes/genetics , Biofilms , Bacterial Proteins/genetics , Bacterial Proteins/metabolism
10.
Cells ; 11(17)2022 08 28.
Article En | MEDLINE | ID: mdl-36078080

TcpC is a multifunctional virulence factor of Uropathogenic Escherichia coli (UPEC). Macrophages can differentiate into two different subsets M1 and M2 that play distinct roles in anti-infection immunity. Here, we investigate the influence of TcpC on M1/M2 polarization and the potential mechanisms. Our data showed that M1 markers CD86 and iNOS were significantly inhibited, while the M2 markers CD163, CD206 and Arg-1 were enhanced in macrophages in kidneys from the TcpC-secreting wild-type CFT073 (CFT073wt)-infected pyelonephritis mouse model, compared with those in macrophages in kidneys from TcpC knockout CFT073 mutant (CFT073Δtcpc)-infected mice. CFT073wt or recombinant TcpC (rTcpC) treatment inhibits LPS + IFN-γ-induced CD80, CD86, TNF-α and iNOS expression, but promotes IL-4-induced CD163, CD206, Arg-1 and IL-10 expression in both human and mouse macrophage cell lines THP-1 and J774A.1. Moreover, rTcpC significantly attenuated LPS + IFN-γ-induced phosphorylation of p38, ERK, p50 and p65 but enhanced IL-4-induced phosphorylation of Akt and STAT6. These data suggest that TcpC inhibits M1 but promotes M2 macrophage polarization by down-regulation of p38, ERK/NF-κB and up-regulation of the Akt/STAT6 signaling pathway, respectively. Our findings not only illuminate the regulatory effects of TcpC on macrophage M1/M2 polarization and its related signaling pathways, but also provide a novel mechanism underlying TcpC-mediated immune evasion of macrophage-mediated innate immunity.


Escherichia coli Infections , Escherichia coli Proteins , Macrophages , Urinary Tract Infections , Uropathogenic Escherichia coli , Virulence Factors , Animals , Escherichia coli Infections/metabolism , Escherichia coli Proteins/metabolism , Humans , Interleukin-4/metabolism , Lipopolysaccharides/pharmacology , Macrophages/metabolism , Macrophages/microbiology , Mice , Mitogen-Activated Protein Kinase Kinases/metabolism , NF-kappa B/metabolism , Proto-Oncogene Proteins c-akt/metabolism , STAT6 Transcription Factor/metabolism , Urinary Tract Infections/metabolism , Urinary Tract Infections/microbiology , Uropathogenic Escherichia coli/genetics , Uropathogenic Escherichia coli/metabolism , Virulence Factors/metabolism
11.
Microb Biotechnol ; 15(11): 2831-2844, 2022 11.
Article En | MEDLINE | ID: mdl-36069650

Expressing heterologous antigens by plasmids may cause antibiotic resistance. Additionally, antigen expression via plasmids is unstable due to the loss of the plasmid. Here, we developed a balanced-lethal system. The Listeria monocytogenes (LM) balanced-lethal system has been previously used as an antigen carrier to induce cellular immune response. However, thus far, there has been no reports on Listeria ivanovii (LI) balanced-lethal systems. The dal and dat genes from the LI-attenuated LIΔatcAplcB (LIΔ) were deleted consecutively, resulting in a nutrient-deficient LIΔdd strain. Subsequently, an antibiotic resistance-free plasmid carrying the LM dal gene was transformed into the nutrient-deficient strain to generate the LI balanced-lethal system LIΔdd:dal. The resultant bacterial strain retains the ability to proliferate in phagocytic cells, as well as the ability to adhere and invade hepatocytes. Its genetic composition was stable, and compared to the parent strain, the balanced-lethal system was substantially attenuated. In addition, LIΔdd:dal induced specific CD4+ /CD8+ T-cell responses and protected mice against LIΔ challenge. Similarly, we constructed an LM balanced-lethal system LMΔdd:dal. Sequential immunization with different recombinant Listeria strains will significantly enhance the immunotherapeutic effect. Thus, LIΔdd:dal combined with LMΔdd:dal, or with other balanced-lethal systems will be more promising alternative for vaccine development.


Listeria monocytogenes , Listeria , Tuberculosis Vaccines , Mice , Animals , Listeria/genetics , Listeria/metabolism , Tuberculosis Vaccines/genetics , Listeria monocytogenes/genetics , Vaccines, Attenuated/genetics , Anti-Bacterial Agents/metabolism
12.
Front Microbiol ; 13: 962326, 2022.
Article En | MEDLINE | ID: mdl-35935244

Listeria monocytogenes (LM) induces efficient and specific T-cell immune responses in the host. Listeriolysin O (LLO) is the main virulence protein of LM. LLO helps LM escape from the lysosome. However, the pronounced pathogenicity of LM limits its practical application as a live bacterial vector. Listeria ivanovii (LI) also displays intracellular parasitic abilities, cell to cell transfer, and other LM properties, with an elevated biosafety relative to LM. We have confirmed that LI can be used as a viable bacterial vaccine vector. However, we have also observed in vivo that LI vector vaccine candidates survive in the immune organ (spleen) for a shorter time compared with the survival time of LM and elicit weaker immune responses compared with LM. Studies have confirmed that hemolysin correlates with some important biological properties of Listeria, including cell invasion, intracellular proliferation, and the ability to induce immune responses. We speculated that the weaker immunogenicity of LI compared to LM may be related to the function of ivanolysin O (ILO). Here, we established a hemolysin gene deletion strain, LIΔilo, and a modified strain, LIΔilo:hly, whose ilo was replaced by hly. The hemolysin-modified strain was attenuated; however, it led to significantly improved invasive and proliferative activities of antigen-presenting cells, including those of RAW 264.7 macrophages, compared with the effects of LI. Mice immunized twice with LIΔilo:hly showed higher cytokine levels and better challenge protection rates than LI-immunized mice. This is the first description in Listeria carrier vaccine research of the modification of LI hemolysin to obtain a better vaccine carrier than LI. The recombinant strain LIΔilo:hly showed good biosafety and immunogenicity, and thus appears to be a good vector strain for vaccine development.

13.
Front Cell Infect Microbiol ; 12: 1083009, 2022.
Article En | MEDLINE | ID: mdl-36619764

Hypervirulent and multidrug-resistant Klebsiella pneumoniae poses a significant threat to public health. We aimed to determine the common carbapenemase genotypes and the carriage patterns, main antibiotic resistance mechanisms, and in vitro susceptibility of clinical isolates of carbapenem-resistant K. pneumoniae (CRKP) to ceftazidime/avibactam (CZA) for the reasonable selection of antimicrobial agents and determine whether hypermucoviscous (HMV) phenotype and virulence-associated genes are key factors for CRKP colonization and persistence. Antibiotics susceptibility of clinical CRKP isolates and carbapenemase types were detected. CRKP isolates were identified as hypermucoviscous K. pneumoniae (HMKP) using the string test, and detection of virulence gene was performed using capsular serotyping. The bla KPC-2, bla NDM, bla IMP, and/or bla OXA-48-like were detected in 96.4% (402/417) of the isolates, and the bla KPC-2 (64.7%, 260/402) was significantly higher (P<0.05) than those of bla NDM (25.1%), bla OXA-48-like (10.4%), and bla IMP (4.2%). Carriage of a single carbapenemase gene was observed in 96.3% of the isolates, making it the dominant antibiotic resistance genotype carriage pattern (P < 0.05). Approximately 3.7% of the isolates carried two or more carbapenemase genotypes, with bla KPC-2 + bla NDM and bla NDM + bla IMP being the dominant multiple antibiotic resistance genotype. In addition, 43 CRKP isolates were identified as HMKP, with a prevalence of 10.3% and 2.7% among CRKP and all K. pneumoniae isolates, respectively. Most clinical CRKP isolates were isolated from elderly patients, and carbapenemase production was the main mechanism of drug resistance. Tigecycline and polymyxin B exhibited exceptional antimicrobial activity against CRKP isolates in vitro. Furthermore, bla KPC-2, bla NDM, and bla OXA-48-like were the main carbapenemase genes carried by the CRKP isolates. CZA demonstrated excellent antimicrobial activity against isolates carrying the single bla KPC-2 or bla OXA-48-like genotype. Capsular serotype K2 was the main capsular serotype of the carbapenem-resistant HMKP isolates. Survival rates of Galleria mellonella injected with K. pneumoniae 1-7 were 20.0, 16.7, 6.7, 23.3, 16.7, 3.3, and 13.3, respectively. Therefore, worldwide surveillance of these novel CRKP isolates and carbapenem-resistant HMKP isolates as well as the implementation of stricter control measures are needed to prevent further dissemination in hospital settings.


Anti-Bacterial Agents , Klebsiella Infections , Humans , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/therapeutic use , Klebsiella pneumoniae , Tertiary Care Centers , Virulence/genetics , Klebsiella Infections/diagnosis , Drug Resistance, Multiple, Bacterial/genetics , beta-Lactamases/genetics , Carbapenems/pharmacology , Serogroup , Microbial Sensitivity Tests , Risk Factors , China/epidemiology
14.
Front Genet ; 12: 671552, 2021.
Article En | MEDLINE | ID: mdl-34335686

Global DNA hypomethylation has been reported in patients with chronic hepatitis B (CHB) and non-alcoholic fatty-liver disease (NAFLD). However, the global DNA methylation profile of patients with concurrent NAFLD and CHB (NAFLD + CHB) is still unclear. We aimed to detect the hepatic global DNA methylation levels of NAFLD + CHB patients and assess the associated risk factors. Liver biopsies were collected from 55 NAFLD patients with or without CHB. The histological characteristics of the biopsy were then assessed. Hepatic global DNA methylation levels were quantified by fluorometric method. The hepatic global DNA methylation levels in NAFLD + CHB group were significantly lower than that in NAFLD group. Participants with fibrosis showed lower levels of hepatic global DNA methylation than those without fibrosis. Participants with both CHB and fibrosis had lower levels of hepatic global DNA methylation than those without either CHB or fibrosis. The co-occurrence of CHB and fibrosis was significantly associated with a reduction in global DNA methylation levels compared to the absence of both CHB and fibrosis. Our study suggests that patients with NAFLD + CHB exhibited lower levels of global DNA methylation than patients who had NAFLD alone. The co-occurrence of CHB and liver fibrosis in NAFLD patients was associated with a decrease in global DNA methylation levels.

15.
Nat Commun ; 12(1): 3481, 2021 06 09.
Article En | MEDLINE | ID: mdl-34108482

TcpC is a multifunctional virulence factor of uropathogenic E. coli (UPEC). Neutrophil extracellular trap formation (NETosis) is a crucial anti-infection mechanism of neutrophils. Here we show the influence of TcpC on NETosis and related mechanisms. We show NETosis in the context of a pyelonephritis mouse model induced by TcpC-secreting wild-type E. coli CFT073 (CFT073wt) and LPS-induced in vitro NETosis with CFT073wt or recombinant TcpC (rTcpC)-treated neutrophils are inhibited. rTcpC enters neutrophils through caveolin-mediated endocytosis and inhibits LPS-induced production of ROS, proinflammatory cytokines and protein but not mRNA levels of peptidylarginine deiminase 4 (PAD4). rTcpC treatment enhances PAD4 ubiquitination and accumulation in proteasomes. Moreover, in vitro ubiquitination kit analyses show that TcpC is a PAD4-targetd E3 ubiquitin-ligase. These data suggest that TcpC inhibits NETosis primarily by serving as an E3 ligase that promotes degradation of PAD4. Our findings provide a novel mechanism underlying TcpC-mediated innate immune evasion.


Escherichia coli Proteins/metabolism , Extracellular Traps/metabolism , Neutrophils/metabolism , Protein-Arginine Deiminase Type 4/metabolism , Ubiquitination , Virulence Factors/metabolism , Animals , Chromatin/metabolism , Citrullination , Escherichia coli Infections/immunology , Escherichia coli Infections/pathology , Escherichia coli Proteins/genetics , Histones/metabolism , Immune Evasion , Mice , Mutation , Proteasome Endopeptidase Complex/metabolism , Protein-Arginine Deiminase Type 4/genetics , Pyelonephritis/immunology , Pyelonephritis/pathology , Transcription, Genetic , Ubiquitin-Protein Ligases/genetics , Ubiquitin-Protein Ligases/metabolism , Uropathogenic Escherichia coli/metabolism , Uropathogenic Escherichia coli/pathogenicity , Virulence Factors/genetics
16.
PLoS Pathog ; 17(3): e1009481, 2021 03.
Article En | MEDLINE | ID: mdl-33788895

TcpC is a virulence factor of uropathogenic E. coli (UPEC). It was found that TIR domain of TcpC impedes TLR signaling by direct association with MyD88. It has been a long-standing question whether bacterial pathogens have evolved a mechanism to manipulate MyD88 degradation by ubiquitin-proteasome pathway. Here, we show that TcpC is a MyD88-targeted E3 ubiquitin ligase. Kidney macrophages from mice with pyelonephritis induced by TcpC-secreting UPEC showed significantly decreased MyD88 protein levels. Recombinant TcpC (rTcpC) dose-dependently inhibited protein but not mRNA levels of MyD88 in macrophages. Moreover, rTcpC significantly promoted MyD88 ubiquitination and accumulation in proteasomes in macrophages. Cys12 and Trp106 in TcpC are crucial amino acids in maintaining its E3 activity. Therefore, TcpC blocks TLR signaling pathway by degradation of MyD88 through ubiquitin-proteasome system. Our findings provide not only a novel biochemical mechanism underlying TcpC-medicated immune evasion, but also the first example that bacterial pathogens inhibit MyD88-mediated signaling pathway by virulence factors that function as E3 ubiquitin ligase.


Escherichia coli Proteins/metabolism , Myeloid Differentiation Factor 88/metabolism , Signal Transduction/physiology , Uropathogenic Escherichia coli/pathogenicity , Virulence Factors/metabolism , Animals , Cell Line , Female , Humans , Immune Evasion/physiology , Macrophages , Mice , Mice, Inbred C57BL , Pyelonephritis/immunology , Pyelonephritis/microbiology , Toll-Like Receptors/metabolism , Ubiquitin-Protein Ligases/metabolism , Uropathogenic Escherichia coli/immunology , Uropathogenic Escherichia coli/metabolism , Virulence/physiology
17.
Microb Cell Fact ; 20(1): 4, 2021 Jan 03.
Article En | MEDLINE | ID: mdl-33413399

BACKGROUND: Nerol (C10H18O), an acyclic monoterpene, naturally presents in plant essential oils, and is used widely in food, cosmetics and pharmaceuticals as the valuable fragrance. Meanwhile, chemical synthesis is the only strategy for large-scale production of nerol, and the disadvantages of chemical synthesis greatly limit the production and its application. These defects drive the interests of researchers shift to the production of nerol by eco-friendly methods known as biosynthesis methods. However, the main technical bottleneck restricting the biosynthesis of nerol is the lacking of corresponding natural aroma-producing microorganisms. RESULTS: In this study, a novel multi-stress-tolerant probiotics Meyerozyma guilliermondii GXDK6 with aroma-producing properties was identified by whole genome sequencing and metabolomics technology. GXDK6 showed a broad pH tolerance in the range of 2.5-10.0. The species also showed salt tolerance with up to 12% NaCl and up to 18% of KCl or MgCl2. GXDK6 exhibited heavy-metal Mn2+ tolerance of up to 5494 ppm. GXDK6 could also ferment with a total of 21 kinds of single organic matter as the carbon source, and produce abundant aromatic metabolites. Results from the gas chromatography-mass spectrometry indicated the production of 8-14 types of aromatic metabolites (isopentanol, nerol, geraniol, phenylethanol, isobutanol, etc.) when GXDK6 was fermented up to 72 h with glucose, sucrose, fructose, or xylose as the single carbon source. Among them, nerol was found to be a novel aromatic metabolite from GXDK6 fermentation, and its biosynthesis mechanism had also been further revealed. CONCLUSION: A novel aroma-producing M. guilliermondii GXDK6 was identified successfully by whole genome sequencing and metabolomics technology. GXDK6 showed high multi-stress-tolerant properties with acid-base, salty, and heavy-metal environments. The aroma-producing mechanism of nerol in GXDK6 had also been revealed. These findings indicated the aroma-producing M. guilliermondii GXDK6 with multi-stress-tolerant properties has great potential value in the fermentation industry.


Acyclic Monoterpenes/metabolism , Fungal Proteins/metabolism , Genome, Fungal , Metabolome , Saccharomycetales/metabolism , Stress, Physiological , Whole Genome Sequencing/methods , Fungal Proteins/genetics , Saccharomycetales/genetics , Saccharomycetales/growth & development
18.
Int J Mol Sci ; 20(24)2019 Dec 10.
Article En | MEDLINE | ID: mdl-31835569

Butyl glucoside synthesis using bioenzymatic methods at high temperatures has gained increasing interest. Protein engineering using directed evolution of a metagenome-derived ß-glucosidase of Bgl1D was performed to identify enzymes with improved activity and thermostability. An interesting mutant Bgl1D187 protein containing five amino acid substitutions (S28T, Y37H, D44E, R91G, and L115N), showed catalytic efficiency (kcat/Km of 561.72 mM-1 s-1) toward ρ-nitrophenyl-ß-d-glucopyranoside (ρNPG) that increased by 23-fold, half-life of inactivation by 10-fold, and further retained transglycosidation activity at 50 °C as compared with the wild-type Bgl1D protein. Site-directed mutagenesis also revealed that Asp44 residue was essential to ß-glucosidase activity of Bgl1D. This study improved our understanding of the key amino acids of the novel ß-glucosidases and presented a raw material with enhanced catalytic activity and thermostability for the synthesis of butyl glucosides.


Directed Molecular Evolution/methods , Glucosides/metabolism , beta-Glucosidase/chemistry , beta-Glucosidase/metabolism , Amino Acid Substitution , Bacterial Proteins/chemistry , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Enzyme Stability , Half-Life , Hot Temperature , Metagenome , Mutagenesis, Site-Directed , Thermodynamics , beta-Glucosidase/genetics
19.
AMB Express ; 9(1): 159, 2019 Oct 01.
Article En | MEDLINE | ID: mdl-31576505

The products of bacterial ß-glucosidases with favorable cold-adapted properties have industrial applications. A psychrophilic ß-glucosidase gene named bglG from subtropical soil microorganism Exiguobacterium sp. GXG2 was isolated and characterized by function-based screening strategy. Results of multiple alignments showed that the derived protein BglG shared 45.7% identities with reviewed ß-glucosidases in the UniProtKB/Swiss-Prot database. Functional characterization of the ß-glucosidase BglG indicated that BglG was a 468 aa protein with a molecular weight of 53.2 kDa. The BglG showed the highest activity in pH 7.0 at 35 °C and exhibited consistently high levels of activity within low temperatures ranging from 5 to 35 °C. The BglG appeared to be a psychrophilic enzyme. The values of Km, Vmax, kcat, and kcat/Km of recombinant BglG toward ρNPG were 1.1 mM, 1.4 µg/mL/min, 12.7 s-1, and 11.5 mM/s, respectively. The specific enzyme activity of BglG was 12.14 U/mg. The metal ion of Ca2+ and Fe3+ could stimulate the activity of BglG, whereas Mn2+ inhibited the activity. The cold-adapted ß-glucosidase BglG displayed remarkable biochemical properties, making it a potential candidate for future industrial applications.

20.
Microbiologyopen ; 8(11): e871, 2019 11.
Article En | MEDLINE | ID: mdl-31251470

The emerging pollutants antibiotic resistance genes (ARGs) are prevalent in aquatic environments such as estuary. Coastal mangrove ecosystems always serve as natural wetlands for receiving sewage which always carry ARGs. Currently, the research considering ARG distribution in mangrove ecosystems gains more interest. In this work, we investigated the diversity of ARGs in an urban estuary containing mangrove and nonmangrove areas of the South China Sea. A total of 163 ARGs that classified into 22 resistance types and six resistance mechanisms were found. ARG abundance of the samples in the estuary is between 0.144 and 0.203. This is within the general range of Chinese estuaries. The difference analysis showed that abundances of total ARGs, six most abundant ARGs (mtrA, rpoB, rpoC, rpsL, ef-Tu, and parY), the most abundant resistance types (elfamycin, multidrug, and peptide), and the most abundant resistance mechanism (target alteration) were significantly lower in mangrove sediment than that in nonmangrove sediment (p < 0.05). Network and partial redundancy analysis showed that sediment properties and mobile genetic elements were the most influential factors impacting ARG distribution rather than microbial community. The two factors collectively explain 51.22% of the differences of ARG distribution. Our study indicated that mangrove sediments have the capacity to remove ARGs. This work provides a research paradigm for analysis of ARG prevalence and proliferation in the subtropical marine coastal mangrove ecosystem.


Bacteria/genetics , Drug Resistance, Bacterial , Ecosystem , Genes, Bacterial , Geologic Sediments/microbiology , Water Microbiology , Wetlands , Bacteria/drug effects , China , Interspersed Repetitive Sequences
...